Identifiability and model selection frameworks for models of high-grade glioma response to chemoradiation.

阅读:4
作者:Hiremath Khushi C, Atakishi Kenan, Lima Ernesto A B F, Farhat Maguy, Panthi Bikash, Langshaw Holly, Shanker Mihir D, Talpur Wasif, Thrower Sara, Goldman Jodi, Chung Caroline, Yankeelov Thomas E, Hormuth Ii David A
We have developed a family of biology-based mathematical models of high-grade glioma (HGG), capturing the key features of tumour growth and response to chemoradiation. We now seek to quantify the accuracy of parameter estimation and determine, when given a virtual patient cohort, which model was used to generate the tumours. In this way, we systematically test both the parameter and model identifiability. Virtual patients are generated from unique growth parameters whose growth dynamics are determined by the model family. We then assessed the ability to recover model parameters and select the model used to generate the tumour. We then evaluated the accuracy of predictions using the selected model at four weeks post-chemoradiation. We observed median parameter errors from 0.04% to 72.96%. Our model selection framework selected the model that was used to generate the data in 82% of the cases. Finally, we predicted the growth of the virtual tumours using the selected model resulting in low error at the voxel-level (concordance correlation coefficient (CCC) ranged from 0.66 to 0.99) and global level (percentage error in total tumour cellularity ranged from -12.35% to 0.07%). These results demonstrate the reliability of our framework to identify the most appropriate model under noisy conditions expected in the clinical setting.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。