In today's digital environment, effectively detecting and censoring harmful and offensive objects such as weapons, addictive substances, and violent content on online platforms is increasingly important for user safety. This study introduces an Enhanced Object Detection (EOD) model that builds upon the YOLOv8-m architecture to improve the identification of such harmful objects in complex scenarios. Our key contributions include enhancing the cross-stage partial fusion blocks and incorporating three additional convolutional blocks into the model head, leading to better feature extraction and detection capabilities. Utilizing a public dataset covering six categories of harmful objects, our EOD model achieves superior performance with precision, recall, and mAP50 scores of 0.88, 0.89, and 0.92 on standard test data, and 0.84, 0.74, and 0.82 on challenging test cases-surpassing existing deep learning approaches. Furthermore, we employ explainable AI techniques to validate the model's confidence and decision-making process. These advancements not only enhance detection accuracy but also set a new benchmark for harmful object detection, significantly contributing to the safety measures across various online platforms.
Enhancing the YOLOv8 model for realtime object detection to ensure online platform safety.
阅读:3
作者:Jahan Mohammed Kawser, Bhuiyan Fokrul Islam, Amin Al, Mridha M F, Safran Mejdl, Alfarhood Sultan, Che Dunren
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 15(1):21167 |
| doi: | 10.1038/s41598-025-08413-4 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
