Accurate flow stress prediction is vital for optimizing the manufacturing of lightweight materials under high-temperature conditions. In this study, a boron nitride (BN)-reinforced AZ80 magnesium composite was subjected to hot compression tests at temperatures of 300-400 °C and strain rates ranging from 0.01 to 10 s(-1). A data-driven Support Vector Regression (SVR) model was developed to predict flow stress based on temperature, strain rate, and strain. Trained on experimental data, the SVR model demonstrated high predictive accuracy, as evidenced by a low mean squared error (MSE), a coefficient of determination (R(2)) close to unity, and a minimal average absolute relative error (AARE). Sensitivity analysis revealed that strain rate and temperature exerted the greatest influence on flow stress. By integrating machine learning with experimental observations, this framework enables efficient optimization of thermal deformation, supporting data-driven decision-making in forming processes. The results underscore the potential of combining advanced computational models with real-time experimental data to enhance manufacturing efficiency and improve process control in next-generation lightweight alloys.
Investigation of Thermal Deformation Behavior in Boron Nitride-Reinforced Magnesium Alloy Using Constitutive and Machine Learning Models.
阅读:6
作者:Elajjani Ayoub, Feng Yinghao, Ni Wangxi, Xu Sinuo, Sun Chaoyang, Feng Shaochuan
| 期刊: | Nanomaterials | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 Jan 26; 15(3):195 |
| doi: | 10.3390/nano15030195 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
