DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding.

阅读:4
作者:Yue Yang, He Shan
BACKGROUND: Prediction of the drug-target interaction (DTI) is a critical step in the drug repurposing process, which can effectively reduce the following workload for experimental verification of potential drugs' properties. In recent studies, many machine-learning-based methods have been proposed to discover unknown interactions between drugs and protein targets. A recent trend is to use graph-based machine learning, e.g., graph embedding to extract features from drug-target networks and then predict new drug-target interactions. However, most of the graph embedding methods are not specifically designed for DTI predictions; thus, it is difficult for these methods to fully utilize the heterogeneous information of drugs and targets (e.g., the respective vertex features of drugs and targets and path-based interactive features between drugs and targets). RESULTS: We propose a DTI prediction method DTI-HeNE (DTI based on Heterogeneous Network Embedding), which is specifically designed to cope with the bipartite DTI relations for generating high-quality embeddings of drug-target pairs. This method splits a heterogeneous DTI network into a bipartite DTI network, multiple drug homogeneous networks and target homogeneous networks, and extracts features from these sub-networks separately to better utilize the characteristics of bipartite DTI relations as well as the auxiliary similarity information related to drugs and targets. The features extracted from each sub-network are integrated using pathway information between these sub-networks to acquire new features, i.e., embedding vectors of drug-target pairs. Finally, these features are fed into a random forest (RF) model to predict novel DTIs. CONCLUSIONS: Our experimental results show that, the proposed DTI network embedding method can learn higher-quality features of heterogeneous drug-target interaction networks for novel DTIs discovery.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。