A nonlinear alignment strategy was examined for the quantitative analysis of serum metabolites. Two small-molecule mixtures with a difference in relative concentration of 20-100% for 10 of the compounds were added to human serum. The metabolomics protocol using UPLC and XCMS for LC-MS data alignment could readily identify 8 of 10 spiked differences among more than 2700 features detected. Normalization of data against a single factor obtained through averaging the XCMS integrated response areas of spiked standards increased the number of identified differences. The original data structure was well preserved using XCMS, but reintegration of identified differences in the original data reduced the number of false positives. Using UPLC for separation resulted in 20% more detected components compared to HPLC. The length of the chromatographic separation also proved to be a crucial parameter for a number of detected features. Moreover, UPLC displayed better retention time reproducibility and signal-to-noise ratios for spiked compounds over HPLC, making this technology more suitable for nontargeted metabolomics applications.
Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum.
阅读:3
作者:Nordström Anders, O'Maille Grace, Qin Chuan, Siuzdak Gary
| 期刊: | Analytical Chemistry | 影响因子: | 6.700 |
| 时间: | 2006 | 起止号: | 2006 May 15; 78(10):3289-95 |
| doi: | 10.1021/ac060245f | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
