Recently, machine learning potential (MLP) largely enhances the reliability of molecular dynamics, but its accuracy is limited by the underlying ab initio methods. A viable approach to overcome this limitation is to refine the potential by learning from experimental data, which now can be done efficiently using modern automatic differentiation technique. However, potential refinement is mostly performed using thermodynamic properties, leaving the most accessible and informative dynamical data (like spectroscopy) unexploited. In this work, through a comprehensive application of adjoint and gradient truncation methods, we show that both memory and gradient explosion issues can be circumvented in many situations, so the dynamical property differentiation is well-behaved. Consequently, both transport coefficients and spectroscopic data can be used to improve the density functional theory based MLP towards higher accuracy. Essentially, this work contributes to the solution of the inverse problem of spectroscopy by extracting microscopic interactions from vibrational spectroscopic data.
Refining potential energy surface through dynamical properties via differentiable molecular simulation.
阅读:8
作者:Han Bin, Yu Kuang
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Jan 18; 16(1):816 |
| doi: | 10.1038/s41467-025-56061-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
