Mass Spectrometric Mapping of Glycoproteins Modified by Tn-Antigen Using Solid-Phase Capture and Enzymatic Release.

阅读:3
作者:Yang Weiming, Ao Minghui, Song Angellina, Xu Yuanwei, Sokoll Lori, Zhang Hui
Tn-antigen (Tn), a single N-acetylgalactosamine (GalNAc) monosaccharide attached to protein Ser/Thr residues, is found on most cancer yet rarely detected in adult normal tissues as reported in previous studies, featuring it as one of the most distinctive signatures of cancer. Although it is important in cancer, Tn modified glycoproteins are not entirely clear owing to the lack of a suitable method. Knowing the Tn-glycosylated proteins and glycosylation sites are essential to the prevention, diagnosis, and therapy of cancer associated with the expression of Tn. Here, we introduce a method named EXoO-Tn for large-scale mapping of Tn-glycosylated proteins and glycosylation sites. EXoO-Tn utilizes solid-phase immobilization of proteolytic peptides of proteins, which modifies Tn by glycosyltransferase C1GalT1 with isotopically labeled UDP-Gal((13)C(6)), to tag and convert Tn to Gal((13)C(6))-Tn, which gives rise to a unique glycan mass. The exquisite Gal((13)C(6)) modified Tn are then recognized by a human-gut-bacterial enzyme, OpeRATOR, and released at the N-termini of the Gal((13)C(6))-Tn-occupied Ser/Thr residues from immobilized peptides to yield site-containing glycopeptides. The effectiveness of EXoO-Tn was benchmarked by analyzing Jurkat cells, where 947 Tn-glycosylation sites from 480 glycoproteins were mapped. The EXoO-Tn was further applied to the analysis of pancreatic cancer sera, where Tn-glycoproteins were identified. Given the significance of Tn in cancer, EXoO-Tn is anticipated to have broad translational and clinical utilities.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。