Liquid chromatography coupled to mass spectrometry (LC-MS) has become a standard technology in metabolomics. In particular, label-free quantification based on LC-MS is easily amenable to large-scale studies and thus well suited to clinical metabolomics. Large-scale studies, however, require automated processing of the large and complex LC-MS datasets. We present a novel algorithm for the detection of mass traces and their aggregation into features (i.e. all signals caused by the same analyte species) that is computationally efficient and sensitive and that leads to reproducible quantification results. The algorithm is based on a sensitive detection of mass traces, which are then assembled into features based on mass-to-charge spacing, co-elution information, and a support vector machine-based classifier able to identify potential metabolite isotope patterns. The algorithm is not limited to metabolites but is applicable to a wide range of small molecules (e.g. lipidomics, peptidomics), as well as to other separation technologies. We assessed the algorithm's robustness with regard to varying noise levels on synthetic data and then validated the approach on experimental data investigating human plasma samples. We obtained excellent results in a fully automated data-processing pipeline with respect to both accuracy and reproducibility. Relative to state-of-the art algorithms, ours demonstrated increased precision and recall of the method. The algorithm is available as part of the open-source software package OpenMS and runs on all major operating systems.
Automated label-free quantification of metabolites from liquid chromatography-mass spectrometry data.
阅读:15
作者:Kenar Erhan, Franken Holger, Forcisi Sara, Wörmann Kilian, Häring Hans-Ulrich, Lehmann Rainer, Schmitt-Kopplin Philippe, Zell Andreas, Kohlbacher Oliver
| 期刊: | Molecular & Cellular Proteomics | 影响因子: | 5.500 |
| 时间: | 2014 | 起止号: | 2014 Jan;13(1):348-59 |
| doi: | 10.1074/mcp.M113.031278 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
