Accurate identification of bacterial strains in clinical samples is essential to provide an appropriate antibiotherapy to the patient and reduce the prescription of broad-spectrum antimicrobials, leading to antibiotic resistance. In this study, we utilized the combination of a multidimensional analytical technique, liquid chromatography-ion mobility-tandem mass spectrometry (LC-IM-MS/MS), and machine learning to accurately identify and distinguish 11 Escherichia coli (E. coli) strains in artificially contaminated urine samples. Machine learning was utilized on the LC-IM-MS/MS data of the inoculated urine samples to reveal lipid, metabolite, and peptide isomeric biomarkers for the identification of the bacteria strains. Tandem MS and LC separation proved effective in discriminating diagnostic isomers in the negative ion mode, while IM separation was more effective in resolving conformational biomarkers in the positive ion mode. Using hierarchical clustering, the strains are clustered accurately according to their group highlighting the uniqueness of the discriminating biomarkers to the class of each E. coli strain. These results show the great potential of using LC-IM-MS/MS and machine learning for targeted omics applications to diagnose infectious diseases in various environmental and clinical samples accurately.
Discrimination of Common E. coli Strains in Urine by Liquid Chromatography-Ion Mobility-Tandem Mass Spectrometry and Machine Learning.
阅读:6
作者:Olajide Orobola E, Zirpoli Michael, Kartowikromo Kimberly Y, Zheng Jingyi, Hamid Ahmed M
| 期刊: | Journal of the American Society for Mass Spectrometry | 影响因子: | 2.700 |
| 时间: | 2024 | 起止号: | 2024 Nov 6; 35(11):2706-2713 |
| doi: | 10.1021/jasms.4c00189 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
