Volumetric-modulated arc therapy planning using multicriteria optimization for localized prostate cancer.

阅读:4
作者:Ghandour Sarah, Matzinger Oscar, Pachoud Marc
The purpose of this work is to evaluate the volumetric-modulated arc therapy (VMAT) multicriteria optimization (MCO) algorithm clinically available in the RayStation treatment planning system (TPS) and its ability to reduce treatment planning time while providing high dosimetric plan quality. Nine patients with localized prostate cancer who were previously treated with 78 Gy in 39 fractions using VMAT plans and rayArc system based on the direct machine parameter optimization (DMPO) algorithm were selected and replanned using the VMAT-MCO system. First, the dosimetric quality of the plans was evaluated using multiple conformity metrics that account for target coverage and sparing of healthy tissue, used in our departmental clinical protocols. The conformity and homogeneity index, number of monitor units, and treatment planning time for both modalities were assessed. Next, the effects of the technical plan parameters, such as constraint leaf motion CLM (cm/°) and maximum arc delivery time T (s), on the accuracy of delivered dose were evaluated using quality assurance passing rates (QAs) measured using the Delta4 phantom from ScandiDos. For the dosimetric plan's quality analysis, the results show that the VMAT-MCO system provides plans comparable to the rayArc system with no statistical difference for V95% (p < 0.01), D1% (p < 0.01), CI (p < 0.01), and HI (p < 0.01) of the PTV, bladder (p < 0.01), and rectum (p < 0.01) constraints, except for the femoral heads and healthy tissues, for which a dose reduction was observed using MCO compared with rayArc (p < 0.01). The technical parameter study showed that a combination of CLM equal to 0.5 cm/degree and a maximum delivery time of 72 s allowed the accurate delivery of the VMAT-MCO plan on the Elekta Versa HD linear accelerator. Planning evaluation and dosimetric measurements showed that VMAT-MCO can be used clinically with the advantage of enhanced planning process efficiency by reducing the treatment planning time without impairing dosimetric quality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。