Optimal design of polymers is a challenging task due to their enormous chemical and configurational space. Recent advances in computations, machine learning, and increasing trends in data and software availability can potentially address this problem and accelerate the molecular-scale design of polymers. Here, the central problem of polymer design is reviewed, and the general ideas of data-driven methods and their working principles in the context of polymer design are discussed. This Review provides a historical perspective and a summary of current trends and outlines future scopes of data-driven methods for polymer research. A few representative case studies on the use of such data-driven methods for discovering new polymers with exceptional properties are presented. Moreover, attempts are made to highlight how data-driven strategies aid in establishing new correlations and advancing the fundamental understanding of polymers. This Review posits that the combination of machine learning, rapid computational characterization of polymers, and availability of large open-sourced homogeneous data will transform polymer research and development over the coming decades. It is hoped that this Review will serve as a useful reference to researchers who wish to develop and deploy data-driven methods for polymer research and education.
Data-Driven Methods for Accelerating Polymer Design.
阅读:3
作者:Patra, Tarak, K
| 期刊: | ACS Polymers Au | 影响因子: | 6.900 |
| 时间: | 2022 | 起止号: | 2021 Dec 28; 2(1):8-26 |
| doi: | 10.1021/acspolymersau.1c00035 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
