Combining relation extraction with function detection for BEL statement extraction.

阅读:3
作者:Liu Suwen, Cheng Wei, Qian Longhua, Zhou Guodong
The BioCreative-V community proposed a challenging task of automatic extraction of causal relation network in Biological Expression Language (BEL) from the biomedical literature. Previous studies on this task largely used models induced from other related tasks and then transformed intermediate structures to BEL statements, which left the given training corpus unexplored. To make full use of the BEL training corpus, in this work, we propose a deep learning-based approach to extract BEL statements. Specifically, we decompose the problem into two subtasks: entity relation extraction and entity function detection. First, two attention-based bidirectional long short-term memory networks models are used to extract entity relation and entity function, respectively. Then entity relation and their functions are combined into a BEL statement. In order to boost the overall performance, a strategy of threshold filtering is applied to improve the precision of identified entity functions. We evaluate our approach on the BioCreative-V Track 4 corpus with or without gold entities. The experimental results show that our method achieves the state-of-the-art performance with an overall F1-measure of 46.9% in stage 2 and 21.3% in stage 1, respectively.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。