Inferring Gene Regulatory Networks from RNA-seq Data Using Kernel Classification.

阅读:4
作者:Al-Aamri Amira, Kudlicki Andrzej S, Maalouf Maher, Taha Kamal, Homouz Dirar
Gene expression profiling is one of the most recognized techniques for inferring gene regulators and their potential targets in gene regulatory networks (GRN). The purpose of this study is to build a regulatory network for the budding yeast Saccharomyces cerevisiae genome by incorporating the use of RNA-seq and microarray data represented by a wide range of experimental conditions. We introduce a pipeline for data analysis, data preparation, and training models. Several kernel classification models; including one-class, two-class, and rare event classification methods, are used to categorize genes. We test the impact of the normalization techniques on the overall performance of RNA-seq. Our findings provide new insights into the interactions between genes in the yeast regulatory network. The conclusions of our study have significant importance since they highlight the effectiveness of classification and its contribution towards enhancing the present comprehension of the yeast regulatory network. When assessed, our pipeline demonstrates strong performance across different statistical metrics, such as a 99% recall rate and a 98% AUC score.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。