Cone-beam computed tomography (CBCT) is widely used in dentistry, surgery, radiotherapy and other medical fields. However, repeated CBCT scans expose patients to additional radiation doses, increasing the risk of secondary malignant tumors. Low-dose CBCT image reconstruction technology, which employs advanced algorithms to reduce radiation dose while enhancing image quality, has emerged as a focal point of recent research. This review systematically examined deep learning-based methods for low-dose CBCT reconstruction. It compared different network architectures in terms of noise reduction, artifact removal, detail preservation, and computational efficiency, covering three approaches: image-domain, projection-domain, and dual-domain techniques. The review also explored how emerging technologies like multimodal fusion and self-supervised learning could enhance these methods. By summarizing the strengths and weaknesses of current approaches, this work provides insights to optimize low-dose CBCT algorithms and support their clinical adoption.
[Advances in low-dose cone-beam computed tomography image reconstruction methods based on deep learning].
阅读:5
作者:Shi Jiangyuan, Song Ying, Li Guangjun, Bai Sen
| 期刊: | Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 25; 42(3):635-642 |
| doi: | 10.7507/1001-5515.202409021 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
