PURPOSE: Multiparametric MRI contains rich and complementary anatomical and functional information, which is often utilized separately. This study aims to propose an adaptive multiparametric MRI (mpMRI) fusion method and examine its capability in improving tumor contrast and synthesizing novel tissue contrasts among liver cancer patients. METHODS: An adaptive mpMRI fusion method was developed with five components: image pre-processing, fusion algorithm, database, adaptation rules, and fused MRI. Linear-weighted summation algorithm was used for fusion. Weight-driven and feature-driven adaptations were designed for different applications. A clinical-friendly graphic-user-interface (GUI) was developed in Matlab and used for mpMRI fusion. Twelve liver cancer patients and a digital human phantom were included in the study. Synthesis of novel image contrast and enhancement of image signal and contrast were examined in patient cases. Tumor contrast-to-noise ratio (CNR) and liver signal-to-noise ratio (SNR) were evaluated and compared before and after mpMRI fusion. RESULTS: The fusion platform was applicable in both XCAT phantom and patient cases. Novel image contrasts, including enhancement of soft-tissue boundary, vertebral body, tumor, and composition of multiple image features in a single image were achieved. Tumor CNR improved from -1.70 ± 2.57 to 4.88 ± 2.28 (p < 0.0001) for T1-w, from 3.39 ± 1.89 to 7.87 ± 3.47 (p < 0.01) for T2-w, and from 1.42 ± 1.66 to 7.69 ± 3.54 (p < 0.001) for T2/T1-w MRI. Liver SNR improved from 2.92 ± 2.39 to 9.96 ± 8.60 (p < 0.05) for DWI. The coefficient of variation (CV) of tumor CNR lowered from 1.57, 0.56, and 1.17 to 0.47, 0.44, and 0.46 for T1-w, T2-w and T2/T1-w MRI, respectively. CONCLUSION: A multiparametric MRI fusion method was proposed and a prototype was developed. The method showed potential in improving clinically relevant features such as tumor contrast and liver signal. Synthesis of novel image contrasts including the composition of multiple image features into single image set was achieved.
Improving liver tumor image contrast and synthesizing novel tissue contrasts by adaptive multiparametric MRI fusion.
阅读:4
作者:Zhang Lei, Yin Fang-Fang, Lu Ke, Moore Brittany, Han Silu, Cai Jing
| 期刊: | Precision Radiation Oncology | 影响因子: | 2.100 |
| 时间: | 2022 | 起止号: | 2022 Sep;6(3):190-198 |
| doi: | 10.1002/pro6.1167 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
