The cancer "omics" reveal many clinically relevant alterations that are transforming the molecular characterization of glioblastomas. However, many of these findings are not yet translated into clinical practice due, in part, to the lack of non-invasive biomarkers and the limitations imposed by the blood-brain barrier. Nanobodies, camelid single-domain antibody fragments, emerge as a promising tool for immunotargeted applications for diagnosing and treating glioblastomas. Performing agnostic bioinformatic analysis from glioblastoma patient datasets, we identified ATP Binding Cassette subfamily C member 3 (ABCC3) as a suitable target for immunotargeted applications. The expression of ABCC3 is associated with poor survival and impaired response to temozolomide. Importantly, high expression of ABCC3 is restricted to glioblastoma, with negligible levels in healthy brain tissue, and further correlates with tumor grade and stemness markers. We identified three immunogenic epitopes of ABCC3 which were used to isolate nanobodies from a glioblastoma-specific phage-display nanobody library. Two nanobodies targeting ABCC3 (NbA42 and NbA213) were further characterized and demonstrated in vivo selective recognition of ABCC3 in glioblastoma xenograft mouse models upon systemic administration. We designate NbA42 and NbA213 as new candidates to implement immunotargeted applications guiding a more personalized and precise diagnosis, monitoring, and treatment of glioblastoma patients.
Nanobodies targeting ABCC3 for immunotargeted applications in glioblastoma.
阅读:3
作者:Ruiz-López Eduardo, JovÄevska Ivana, González-Gómez Ruth, Tejero Héctor, Al-Shahrour Fátima, Muyldermans Serge, Schuhmacher Alberto J
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2022 | 起止号: | 2022 Dec 30; 12(1):22581 |
| doi: | 10.1038/s41598-022-27161-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
