Vulnerability-oriented directed fuzzing for binary programs.

阅读:4
作者:Yu Lu, Lu Yuliang, Shen Yi, Li Yuwei, Pan Zulie
Directed greybox fuzzing (DGF) is an effective method to detect vulnerabilities of the specified target code. Nevertheless, there are three main issues in the existing DGFs. First, the target vulnerable code of the DGFs needs to be manually selected, which is tedious. Second, DGFs mainly leverage distance information as feedback, which neglects the unequal roles of different code snippets in reaching the targets. Third, most of the existing DGFs need the source code of the test programs, which is not available for binary programs. In this paper, we propose a vulnerability-oriented directed binary fuzzing framework named VDFuzz, which automatically identifies the targets and leverages dynamic information to guide the fuzzing. In specific, VDFuzz consists of two components, a target identifier and a directed fuzzer. The target identifier is designed based on a neural-network, which can automatically locate the target code areas that are similar to the known vulnerabilities. Considering the inequality of code snippets in reaching the given target, the directed fuzzer assigns different weights to basic blocks and takes the weights as feedback to generate test cases to reach the target code. Experimental results demonstrate that VDFuzz outperformed the state-of-the-art fuzzers and was effective in vulnerability detection of real-world programs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。