PURPOSE: We introduce FSL-MRS, an end-to-end, modular, open-source MRS analysis toolbox. It provides spectroscopic data conversion, preprocessing, spectral simulation, fitting, quantitation, and visualization. METHODS: The FSL-MRS package is modular. Its programs operate on data in a standard format (Neuroimaging Informatics Technology Initiative [NIfTI]) capable of storing single-voxel and multivoxel spectroscopy, including spatial orientation information. The FSL-MRS toolbox includes tools for preprocessing of raw spectroscopy data, including coil combination, frequency and phase alignment, and filtering. A density matrix simulation program is supplied for generation of basis spectra from simple text-based descriptions of pulse sequences. Fitting is based on linear combination of basis spectra and implements Markov chain Monte Carlo optimization for the estimation of the full posterior distribution of metabolite concentrations. Validation of the fitting is carried out on independently created simulated data, phantom data, and three in vivo human data sets (257 single-voxel spectroscopy and 8 MRSI data sets) at 3 T and 7 T. Interactive HTML reports are automatically generated by processing and fitting stages of the toolbox. The FSL-MRS package can be used on the command line or interactively in the Python language. RESULTS: Validation of the fitting shows low error in simulation (median error of 11.9%) and in phantom (3.4%). Average correlation between a third-party toolbox (LCModel) and FSL-MRS was high (0.53-0.81) in all three in vivo data sets. CONCLUSION: The FSL-MRS toolbox is designed to be flexible and extensible to new forms of spectroscopic acquisitions. Custom fitting models can be specified within the framework for dynamic or multivoxel spectroscopy. It is available as part of the FMRIB Software Library.
FSL-MRS: An end-to-end spectroscopy analysis package.
阅读:8
作者:Clarke William T, Stagg Charlotte J, Jbabdi Saad
| 期刊: | Magnetic Resonance in Medicine | 影响因子: | 3.000 |
| 时间: | 2021 | 起止号: | 2021 Jun;85(6):2950-2964 |
| doi: | 10.1002/mrm.28630 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
