BACKGROUND: Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or reachability properties, for which scalable analyses exist. The Systems Biology Graphical Notation Process Description language (SBGN-PD) has become a standard to represent reaction networks. However, no qualitative dynamics semantics taking into account all the main features available in SBGN-PD had been proposed so far. RESULTS: We propose two qualitative dynamics semantics for SBGN-PD reaction networks, namely the general semantics and the stories semantics, that we formalize using asynchronous automata networks. While the general semantics extends standard Boolean semantics of reaction networks by taking into account all the main features of SBGN-PD, the stories semantics allows to model several molecules of a network by a unique variable. The obtained qualitative models can be checked against dynamical properties and therefore validated with respect to biological knowledge. We apply our framework to reason on the qualitative dynamics of a large network (more than 200 nodes) modeling the regulation of the cell cycle by RB/E2F. CONCLUSION: The proposed semantics provide a direct formalization of SBGN-PD networks in dynamical qualitative models that can be further analyzed using standard tools for discrete models. The dynamics in stories semantics have a lower dimension than the general one and prune multiple behaviors (which can be considered as spurious) by enforcing the mutual exclusiveness between the activity of different nodes of a same story. Overall, the qualitative semantics for SBGN-PD allow to capture efficiently important dynamical features of reaction network models and can be exploited to further refine them.
Qualitative dynamics semantics for SBGN process description.
阅读:3
作者:Rougny Adrien, Froidevaux Christine, Calzone Laurence, Paulevé Loïc
| 期刊: | BMC Systems Biology | 影响因子: | 0.000 |
| 时间: | 2016 | 起止号: | 2016 Jun 16; 10(1):42 |
| doi: | 10.1186/s12918-016-0285-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
