HDXRank: A Deep Learning Framework for Ranking Protein Complex Predictions with Hydrogen-Deuterium Exchange Data.

阅读:6
作者:Wang Liyao, Tučs Andrejs, Ding Songting, Tsuda Koji, Sljoka Adnan
Accurate modeling of protein-protein complex structures is essential for understanding biological mechanisms. Hydrogen-deuterium exchange (HDX) experiments provide valuable insights into binding interfaces. Incorporating HDX data into protein complex modeling workflows offers a promising approach to improve prediction accuracy. Here, we developed HDXRank, a graph neural network (GNN)-based framework for candidate structure ranking utilizing alignment with HDX experimental data. Trained on a newly curated HDX data set, HDXRank captures nuanced local structural features critical for accurate HDX profile prediction. This versatile framework can be integrated with a variety of protein complex modeling tools, transforming the HDX profile alignment into a model quality metric. HDXRank demonstrates effectiveness at ranking models generated by rigid docking or AlphaFold, successfully prioritizing functionally relevant models and improving prediction quality across all tested protein targets. These findings underscore HDXRank's potential to become a pivotal tool for understanding molecular recognition in complex biological systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。