Describing chemical reactions in solution on a molecular level is a challenging task due to the high mobility of weakly interacting solvent molecules which requires configurational sampling. For instance, polar and protic solvents can interact strongly with solutes and may interfere in reactions. To define and identify representative arrangements of solvent molecules modulating a transition state is a nontrivial task. Here, we propose to monitor their active participation in the decaying normal mode at a transition state, which defines active solvent molecules. Moreover, it is desirable to prepare a low-dimensional microsolvation model in a well-defined, fully automated, high-throughput, and easy-to-deploy fashion, which we propose to derive in a stepwise protocol. First, transition state structures are optimized in a sufficiently solvated quantum-classical hybrid model, which are subjected to a redefinition of a then reduced quantum region. From the reduced model, minimally microsolvated structures are extracted that contain only active solvent molecules. Modeling the remaining solvation effects is deferred to a continuum model. To establish an easy-to-use free-energy model, we combine the standard thermochemical gas-phase model with a correction for the cavity entropy in solution. We assess our microsolvation and free-energy models for methanediol formation from formaldehyde; for the hydration of carbon dioxide (which we consider in a solvent mixture to demonstrate the versatility of our approach); and, finally, for the chlorination of phenol with hypochlorous acid.
Automated Microsolvation for Minimum Energy Path Construction in Solution.
阅读:7
作者:Türtscher Paul L, Reiher Markus
| 期刊: | Journal of Chemical Theory and Computation | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 Jun 10; 21(11):5571-5587 |
| doi: | 10.1021/acs.jctc.5c00245 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
