Nitrogen-oxygen-sulfur (NOS) linkages act as allosteric redox switches, modulating enzymatic activity in response to redox fluctuations. While NOS linkages in proteins were once assumed to occur only between lysine and cysteine, our investigation shows that these bonds extend beyond the well-studied lysine-NOS-cysteine examples. By systematically analyzing over 86,000 high-resolution X-ray protein structures, we uncovered 69 additional NOS bonds, including arginine-NOS-cysteine and glycine-NOS-cysteine. Our pipeline integrates machine learning, quantum-mechanical calculations, and high-resolution X-ray crystallographic data to systematically detect these subtle covalent interactions and identify key predictive descriptors for their formation. The discovery of these previously unrecognized linkages broadens the scope of protein chemistry and may enable targeted modulation in drug design and protein engineering. Although our study focuses on NOS linkages, the flexibility of this methodology allows for the investigation of a wide range of chemical bonds and covalent modifications, including structurally resolvable posttranslational modifications (PTMs). By revisiting and re-examining well-established protein models, this work underscores how systematic data-driven approaches can uncover hidden aspects of protein chemistry and inspire deeper insights into protein function and stability.
Revealing arginine-cysteine and glycine-cysteine NOS linkages by a systematic re-evaluation of protein structures.
阅读:5
作者:Bazzi Sophia, Sayyad Sharareh
| 期刊: | Communications Chemistry | 影响因子: | 6.200 |
| 时间: | 2025 | 起止号: | 2025 May 13; 8(1):146 |
| doi: | 10.1038/s42004-025-01535-w | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
