Fundamental to post-transcriptional regulation, the in vivo binding of RNA binding proteins (RBPs) on their RNA targets heavily depends on RNA structures. To date, most methods for RBP-RNA interaction prediction are based on RNA structures predicted from sequences, which do not consider the various intracellular environments and thus cannot predict cell type-specific RBP-RNA interactions. Here, we present a web server PrismNet that uses a deep learning tool to integrate in vivo RNA secondary structures measured by icSHAPE experiments with RBP binding site information from UV cross-linking and immunoprecipitation in the same cell lines to predict cell type-specific RBP-RNA interactions. Taking an RBP and an RNA region with sequential and structural information as input ('Sequence & Structure' mode), PrismNet outputs the binding probability of the RBP and this RNA region, together with a saliency map and a sequence-structure integrative motif. The web server is freely available at http://prismnetweb.zhanglab.net.
PrismNet: predicting protein-RNA interaction using in vivo RNA structural information.
阅读:4
作者:Xu Yiran, Zhu Jianghui, Huang Wenze, Xu Kui, Yang Rui, Zhang Qiangfeng Cliff, Sun Lei
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2023 | 起止号: | 2023 Jul 5; 51(W1):W468-W477 |
| doi: | 10.1093/nar/gkad353 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
