Topologically protected magnon surface states are highly desirable as an ideal platform to engineer low-dissipation spintronics devices. However, theoretical prediction of topological magnons in strongly correlated materials proves to be challenging because the ab initio density functional theory calculations fail to reliably predict magnetic interactions in correlated materials. Here, we present a symmetry-based approach, which predicts topological magnons in magnetically ordered crystals, upon applying external perturbations such as magnetic/electric fields and/or mechanical strains. We apply this approach to carry out an efficient search for magnetic materials in the Bilbao Crystallographic Server, where, among 198 compounds with an over 300-K transition temperature, we identify 12 magnetic insulators that support room-temperature topological magnons. They feature Weyl magnons with surface magnon arcs and magnon axion insulators with either chiral surface or hinge magnon modes, offering a route to realize energy-efficient devices based on protected surface magnons.
An efficient material search for room-temperature topological magnons.
阅读:4
作者:Karaki Mohammed J, Yang Xu, Williams Archibald J, Nawwar Mohamed, Doan-Nguyen Vicky, Goldberger Joshua E, Lu Yuan-Ming
| 期刊: | Science Advances | 影响因子: | 12.500 |
| 时间: | 2023 | 起止号: | 2023 Feb 17; 9(7):eade7731 |
| doi: | 10.1126/sciadv.ade7731 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
