Distinct roles for the thioredoxin and glutathione antioxidant systems in Nrf2-Mediated lung tumor initiation and progression.

阅读:19
作者:Sherwood Amanda M, Yasseen Basma A, DeBlasi Janine M, Caldwell Samantha, DeNicola Gina M
Redox regulators are emerging as critical mediators of lung tumorigenesis. NRF2 and its negative regulator KEAP1 are commonly mutated in human lung cancers, leading to NRF2 accumulation and constitutive expression of NRF2 target genes, many of which are at the interface between antioxidant function and anabolic processes that support cellular proliferation. Nrf2 activation promotes lung tumor initiation and early progression in murine models of lung cancer, but which Nrf2 targets mediate these phenotypes is unknown. Nrf2 regulates two parallel antioxidant systems mediated by thioredoxin reductase 1 (TXNRD1) and glutathione reductase (GSR), which promote the reduction of protein antioxidant thioredoxin (TXN) and tripeptide antioxidant glutathione (GSH), respectively. We deleted TXNRD1 and GSR alone, or in combination, in lung tumors harboring mutations in Kras(G12D) and Nrf2(D29H). We found that tumor initiation was promoted by expression of GSR, but not TXNRD1, regardless of Nrf2 status. In contrast, Nrf2(D29H) tumors, but not Nrf2(WT), were dependent on TXNRD1 for tumor progression, while GSR was dispensable. Simultaneous deletion of GSR and TXNRD1 reduced initiation and progression independent of Nrf2 status, but surprisingly did not completely abrogate tumor formation. Thus, the thioredoxin and glutathione antioxidant systems play unique roles in tumor initiation and progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。