There is no doubt that the proper development of the heart is important for its correct function, in addition, maturation processes of the heart are crucial as well. The actin-binding protein nexilin seems to take over central roles in the latter processes, as nexilin-deficient mice are phenotypically inconspicuous at birth but die within short time thereafter. Recently, it has been proposed that nexilin plays a role in the formation and function of transverse tubules (T-tubules), which are essential for excitation-contraction coupling in the hearts of mature animals. Although it has long been known that nexilin is subjected to alternative splicing, a molecular characterization of the respective isoforms is not yet available. Here, we describe novel nexilin splice variants and analyze their expression in tissues of mice and humans. Interestingly, nexilin isoforms segregate to myocyte- and epithelial-specific isoforms. Moreover, heart-specific isoforms of nexilin localize differently between atria and ventricles and are also expressed in the endothelial cells of blood vessels. Further, we narrowed down the critical exons in the actin-binding domains 1 and 2 (ABD1/2), and observed different self-interaction properties by recombinant protein interaction studies. Our results emphasize the diverse tissue and subcellular distribution of the individual nexilin isoforms and point to the importance of taking a closer look at the particular nexilin isoforms investigated.
Identification of Novel Nexilin Splice Variants in Mouse and Human Tissues.
阅读:4
作者:Jung Paul, Fiedelak André, DreeÃen Celina, Huber Otmar, Reiche Juliane
| 期刊: | Cells | 影响因子: | 5.200 |
| 时间: | 2024 | 起止号: | 2024 Dec 6; 13(23):2018 |
| doi: | 10.3390/cells13232018 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
