OBJECTIVE: To investigate the potential value of exosomes derived from rat ectoderm mesenchymal stem cells (EMSCs-exo) for repairing secondary spinal cord injury. METHODS: EMSCs-exo were obtained using ultracentrifugation from EMSCs isolated from rat nasal mucosa, identified by transmission electron microscope, nanoparticle tracking analysis (NTA), and Western blotting, and quantified using the BCA method. Neonatal rat microglia purified by differential attachment were induced with 100 μg/L lipopolysaccharide (LPS) and treated with 37.5 or 75 mg/L EMSCs-exo. PC12 cells were exposed to 400 μmol/L H(2)O(2) and treated with EMSCs-exo at 37.5 or 75 mg/L. The protein and mRNA expressions of Arg1 and iNOS in the treated cells were determined with Western blotting and qRT- PCR, and the concentrations of IL- 6, IL-10, and IGF-1 in the supernatants were measured with ELISA. The viability and apoptosis of PC12 cells were detected using CCK-8 assay and flow cytometry. RESULTS: The isolated rat EMSCs showed high expressions of nestin, CD44, CD105, and vimentin. The obtained EMSCs-exo had a typical cup-shaped structure under transmission electron microscope with an average particle size of 142 nm and positivity for CD63, CD81, and TSG101 but not vimentin. In LPS-treated microglia, EMSCs-exo treatment at 75 mg/L significantly increased Arg1 protein level and lowered iNOS protein expression (P < 0.05). EMSCs-exo treatment at 75 mg/L, as compared with the lower concentration at 37.5 mg/L, more strongly increased Arg1 mRNA expression and IGF-1 and IL-10 production and decreased iNOS mRNA expression and IL-6 production in LPS-induced microglia, and more effectively promoted cell survival and decreased apoptosis rate of H(2)O(2)-induced PC12 cells (P < 0.05). CONCLUSION: EMSCs-exo at 75 mg/L can effectively reduce the proportion of M1 microglia and alleviate neuronal apoptosis under oxidative stress to promote neuronal survival, suggesting its potential in controlling secondary spinal cord injury.
[Exosomes from ectoderm mesenchymal stem cells inhibits lipopolysaccharide-induced microglial M1 polarization and promotes survival of H(2)O(2)-exposed PC12 cells by suppressing inflammatory response and oxidative stress].
阅读:16
作者:Sun X, Shi H, Zhang L, Liu Z, Li K, Qian L, Zhu X, Yang K, Fu Q, Ding H
| 期刊: | Nan fang yi ke da xue xue bao = Journal of Southern Medical University | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Jan 20; 44(1):119-128 |
| doi: | 10.12122/j.issn.1673-4254.2024.01.14 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
