Long noncoding RNA Braveheart promotes cardiogenic differentiation of mesenchymal stem cells in vitro.

阅读:8
作者:Hou Jingying, Long Huibao, Zhou Changqing, Zheng Shaoxin, Wu Hao, Guo Tianzhu, Wu Quanhua, Zhong Tingting, Wang Tong
BACKGROUND: Mesenchymal stem cells (MSCs) have limited potential of cardiogenic differentiation. In this study, we investigated the influence of long noncoding RNA Braveheart (lncRNA-Bvht) on cardiogenic differentiation of MSCs in vitro. METHODS: MSCs were obtained from C57BL/6 mice and cultured in vitro. Cells were divided into three groups: blank control, null vector control, and lncRNA-Bvht. All three groups experienced exposure to hypoxia (1% O(2)) and serum deprivation for 24 h, and 24 h of reoxygenation (20% O(2)). Cardiogenic differentiation was induced using 5-AZA for another 24 h. Normoxia (20% O(2)) was applied as a negative control during the whole process. Cardiogenic differentiation was assessed, and expressions of cardiac-specific transcription factors and epithelial-mesenchymal transition (EMT)-associated biomarkers were detected. Anti-mesoderm posterior1 (Mesp1) siRNA was transfected in order to block its expression, and relevant downstream molecules were examined. RESULTS: Compared with the blank control and null vector control groups, the lncRNA-Bvht group presented a higher percentage of differentiated cells of the cardiogenic phenotype in vitro both under the normal condition and after hypoxia/re-oxygenation. There was an increased level of cTnT and α-SA, and cardiac-specific transcription factors including Nkx2.5, Gata4, Gata6, and Isl-1 were significantly upregulated (P < 0.01). Expressions of EMT-associated genes including Snail, Twist and N-cadherin were much higher (P < 0.01). Mesp1 exhibited a distinct augmentation following lncRNA-Bvht transfection. Expressions of relevant cardiac-specific transcription factors and EMT-associated genes all presented a converse alteration in the condition of Mesp1 inhibition prior to lncRNA-Bvht transfection. CONCLUSION: lncRNA-Bvht could efficiently promote MSCs transdifferentation into cells with the cardiogenic phenotype in vitro. It might function via enhancing the expressions of cardiac-specific transcription factors and EMT-associated genes. Mesp1 could be a pivotal intermediary in the procedure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。