Insulin regulates lymphatic endothelial integrity via palmitoylation.

阅读:4
作者:Gonzalez-Nieves Silvia, Wei Xiaochao, Guignard Simon, Nguyen Thi, McQuillan Jay, Zhang Qiang, Zhang Jinsong, McGuffee Reagan M, Ford David A, Semenkovich Clay F, Cifarelli Vincenza
Lipid metabolism plays a critical role in lymphatic endothelial cell (LEC) development and vessel maintenance. Altered lipid metabolism is associated with loss of lymphatic vessel integrity, which compromises organ function, protective immunity, and metabolic health. Thus, understanding how lipid metabolism affects LECs is critical for uncovering the mechanisms underlying lymphatic dysfunction. Protein palmitoylation, a lipid-based post-translational modification, has emerged as a critical regulator of protein function, stability, and interaction networks. Insulin, a master regulator of systemic lipid metabolism, also regulates protein palmitoylation. However, the role of insulin-driven palmitoylation in LEC biology remains unexplored. To examine the role of palmitoylation in LEC function, we generated the first palmitoylation proteomics profile in human LECs, validated insulin-regulated targets, and determined the role of palmitoylation in LEC barrier function. In unstimulated conditions, palmitoylation occurred primarily on proteins involved in vesicular and membrane trafficking, and in translation initiation. Insulin treatment, instead, enriched palmitoylation of proteins involved in LEC integrity, namely junctional proteins such as claudin 5, along with small GTPases and ubiquitination enzymes. We also investigated the role of the long-chain fatty acid transporter CD36, a major mediator of palmitate uptake into cells, in regulating optimal lymphatic protein palmitoylation. CD36 silencing in LECs increased by 2-fold palmitoylation of proteins involved in inflammation and immune cell activation. Overall, our findings provide novel insights into the intricate relationship between lipid modification and LEC function, suggesting that insulin and palmitoylation play a critical role in lymphatic endothelial function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。