This article presents the development of a Portable Aerosol Collector and Spectrometer (PACS), an instrument designed to measure particle number, surface area, and mass concentrations continuously and time-weighted mass concentration by composition from 10 nm to 10 μm. The PACS consists of a six-stage particle size selector, a valve system, a water condensation particle counter to detect number concentrations, and a photometer to detect mass concentrations. The stages of the selector include three impactor and two diffusion stages, which resolve particles by size and collect particles for later chemical analysis. Particle penetration by size was measured through each stage to determine actual collection performance and account for particle losses. The data inversion algorithm uses an adaptive grid-search process with a constrained linear least-square solver to fit a tri-modal (ultrafine, fine, and coarse), log-normal distribution to the input data (number and mass concentration exiting each stage). The measured 50% cutoff diameter of each stage was similar to the design. The pressure drop of each stage was sufficiently low to permit its operation with portable air pumps. Sensitivity studies were conducted to explore the influence of unknown particle density (range from 500 to 3,000 kg/m(3)) and shape factor (range from 1.0 to 3.0) on algorithm output. Assuming standard density spheres, the aerosol size distributions fit well with a normalized mean bias of -4.9% to 3.5%, normalized mean error of 3.3% to 27.6%, and R2 values of 0.90 to 1.00. The fitted number and mass concentration biases were within ±10% regardless of uncertainties in density and shape. However, fitted surface area concentrations were more likely to be underestimated/overestimated due to the variation in particle density and shape. The PACS represents a novel way to simultaneously assess airborne aerosol composition and concentration by number, surface area, and mass over a wide size range.
Development of a Portable Aerosol Collector and Spectrometer (PACS).
阅读:5
作者:Cai Changjie, Thomas Geb W, Yang Tianbao, Park Jae Hong, Gogineni Sivaram P, Peters Thomas M
| 期刊: | Aerosol Science and Technology | 影响因子: | 2.100 |
| 时间: | 2018 | 起止号: | 2018 May;52(12):1351-1369 |
| doi: | 10.1080/02786826.2018.1524985 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
