Viral myocarditis (VM) is an inflammatory disease posing a serious threat to public health, with various viral pathogens contributing to its pathogenesis. Coxsackievirus B3 (CVB3) is the most frequently implicated causative agent and has been extensively studied because of its high prevalence and severity. No specific therapeutic interventions for VM exist, and vaccine development has encountered substantial challenges. Therefore, we aimed to develop a novel CVB3 mucosal vaccine as a preventive strategy against VM. Gram-positive enhancer matrice (GEM) particles serve as innovative mucosal vaccine adjuvants and antigen delivery systems that enhance antigen immunogenicity by facilitating effective mucosal immune responses. In this study, GEM particle display technology was used to develop two novel CVB3 vaccines: (1) a GEM particle-based vaccine displaying the CVB3 capsid protein VP1 via a PA anchor protein (GEM-PA-VP1), and (2) a GEM particle-based vaccine displaying VP1 via the FcSP peptide (GEM-Fc-VP1). Both GEM-PA-VP1 and GEM-Fc-VP1 vaacines significantly elevated levels of specific IgG, IgG1, IgG2a, sIgA and neutralizing antibodies in a mouse model, along with enhanced secretion of Th1- and Th2-associated cytokines, compared to controls. Notably, GEM-Fc-VP1 demonstrated superior immunogenicity compared with that of GEM-PA-VP1, evidenced by higher antibody titres and cytokine responses. In challenge protection experiments, both vaccines significantly improved survival rates, reduced myocardial enzyme levels, and decreased inflammatory cell infiltration in myocardial tissue, with GEM-Fc-VP1 exhibiting greater efficacy. These findings establish a foundation for the development of a safe and effective CVB3 candidate vaccine and provide novel insights into the potential of peptide-mediated subunit vaccine approaches.
Innovative use of gram-positive enhancer matrix particles and affinity peptides in a vaccine against Coxsackievirus B3.
阅读:6
作者:Qian Shaoju, Li Ruixue, Chen Guanyu, Ma Yinghua, Zhang Xuehan, Tang Zhou, Song Yihang, Xu Zhishan, Zhang Zihan, He Yeqing, Zhang Xingyi, Lu Shuao, Yang Zishan, Song Xiangfeng, Yu Wenfa, Yu Lili
| 期刊: | Virulence | 影响因子: | 5.400 |
| 时间: | 2025 | 起止号: | 2025 Dec;16(1):2481657 |
| doi: | 10.1080/21505594.2025.2481657 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
