The impact of age and renal function on the pharmacokinetics and protein binding characteristics of fludarabine in paediatric and adult patients undergoing allogeneic haematopoietic stem cell transplantation conditioning.

阅读:16
作者:Nath Christa E, Rosser Sebastian P A, Nath Kiran K, Chung Jason, Larsen Stephen, Gibson John, Gabriel Melissa, Shaw Peter J, Keogh Steven J
AIM: To evaluate the population pharmacokinetics of unbound F-Ara-A (the circulating metabolite of fludarabine) in 211 patients (age range, 0.1-63.4 years) undergoing allogeneic haematopoietic stem cell transplantation conditioning. METHODS: Total (n = 2480) and unbound (n = 1403) F-Ara-A concentrations were measured in blood samples collected at timed intervals after fludarabine doses ranging from 10 to 50 mg/m(2) and infused over 0.42-1.5 h. A three-compartment population pharmacokinetic model was developed based on unbound plasma concentrations and used to estimate F-Ara-A unbound pharmacokinetic parameters and fraction unbound (fu). A number of covariates, including glomerular filtration rate (GFR) and post-menstrual age (PMA), were evaluated for inclusion in the model. RESULTS: The base population mean estimates ± relative standard error (%RSE) for unbound clearance from the central compartment (CLu) and inter-compartmental clearances (Q2u, Q3u) were 3.42 ± 3%, 6.54 ± 24% and 1.47 ± 16% L/h/70 kg, respectively. The population mean estimates (%RSE) for the unbound volume of distribution into the central (V1u) and peripheral compartments (V2u, V3u) were 9.65 ± 8%, 8.17 ± 9% and 16.4 ± 10% L/70 kg, respectively, and that for fu was 0.877 ± 1%. Covariate model development involved differentiating F-Ara-A CLu into non-renal (1.81 ± 9% L/h/70 kg) and renal components (1.02 ± 9%*GFR L/h/70 kg). A sigmoidal maturation factor was applied to renal CLu, with population mean estimates for the Hill exponent and PMA at 50% mature of 2.97 ± 4% and 69.1 ± 8% weeks, respectively. CONCLUSION: Patient age and GFR are predictors of unbound F-Ara-A CLu. This has the potential to impact dose requirements. Dose individualisation by target concentration intervention will be facilitated by this model once it is externally validated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。