Covalently bonded crystalline substances with micropores have broad applications. Covalent organic frameworks (COFs) are representative of such substances. They have so far been classified into two-dimensional (2D) and three-dimensional (3D) COFs. 2D-COFs have planar shapes useful for broad purposes, but obtaining good crystals of 2D-COFs with sizes larger than 10 μm is significantly challenging, whereas yielding 3D-COFs with high crystallinity and larger sizes is easier. Here, we show COFs with 2.5-dimensional (2.5D) skeletons, which are microscopically constructed with 3D bonds but have macroscopically 2D planar shapes. The 2.5D-COFs shown herein achieve large single-crystal sizes above 0.1âmm and ultrahigh-density primary amines regularly allocated on and pointing perpendicular to the covalently-bonded network plane. Owing to the latter nature, the COFs are promising as CO(2) adsorbents that can simultaneously achieve high CO(2)/N(2) selectivity and low heat of adsorption, which are usually in a mutually exclusive relationship. 2.5D-COFs are expected to broaden the frontier and application of covalently bonded microporous crystalline systems.
2.5-dimensional covalent organic frameworks.
阅读:15
作者:Kitano Tomoki, Goto Syunto, Wang Xiaohan, Kamihara Takayuki, Sei Yoshihisa, Kondo Yukihito, Sannomiya Takumi, Uekusa Hidehiro, Murakami Yoichi
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Jan 2; 16(1):280 |
| doi: | 10.1038/s41467-024-55729-2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
