Advancing cellular insights: Super-resolution STORM imaging of cytoskeletal structures in human stem and cancer cells.

阅读:10
作者:Bharadwaj Anupam, Kumar Amalesh, Padalumavunkal Mathew Sam, Mitra Rumela, Bhattacharyya Jina, Jaganathan Bithiah Grace, Boruah Bosanta R
Fluorescence microscopy is an important tool for cell biology and cancer research. Present-day approach of implementing advanced optical microscopy methods combined with immunofluorescence labelling of specific proteins in cells is now able to deliver optical super-resolution up to ∼25 nm. Here we perform super-resolved imaging using standard immunostaining protocol combined with easy stochastic optical reconstruction microscopy (easySTORM) to observe structural differences of two cytoskeleton elements, actin and tubulin in three different cell types namely human bone marrow-derived mesenchymal stem cells (MSCs), human glioblastoma (U87MG) and breast cancer (MDAMB-231) cells. The average width of the actin bundle obtained from STORM images of stem cells is observed to be larger than the same for U87MG and MDAMB-231 cells. No significant difference is however noticed in the width of the tubulin within the same cells. We also study the functional effect on the 2D migration potential of MDAMB-231 cells silenced for NICD1 and β-catenin. Although similar migration speed is observed for cells with the above two conditions compared to their control cells, easySTORM images show that widths of the actin in MDAMB-231 cells in β-catenin silenced is significantly lower than the same in control cells. Such minute differences however are not observable in widefield images. The outcome of our easySTORM investigation should benefit the researchers carrying out detailed investigations of the cellular structure and potential therapeutic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。