Oleaginous yeasts have emerged as promising microbial cell factories for lipid production, offering sustainable alternatives to traditional sources of biodiesel and nutraceuticals. In this study, the lipid accumulation potential of yeast strains isolated from two freshwater aquatic ecosystems in Cali, Colombia, was evaluated to identify novel candidates for biotechnological applications. A total of 56 strains were tested for their oleaginous nature using a gravimetric lipid assay with glucose as a carbon source. Of the assessed strains, 46.15% exceeded 20% lipid yields relative to the dry biomass. Seven strains were selected using glycerol as a carbon source, but only five yeasts were further characterized for their lipid profiles. Molecular identification revealed diverse species, including Aureobasidium sp., Papiliotrema rajashtanensis, Rhodotorula spp., and Clavispora lusitaniae. The selected strains demonstrated unique lipid profiles, with high proportions of monounsaturated and polyunsaturated fatty acids, such as oleic acid (C18:1) and linoleic acid (C18:2). In particular, Aureobasidium sp. accumulated uncommon fatty acids such as petroselinic acid under conditions induced by glycerol. This fatty acid, which has a double bond in position 6,7 and a melting point of 33 °C, highlights its potential as an alternative to margarine production, as well as a precursor to sophorolipids, estolide esters, soaps, and plastics. Rhodotorula sp. exhibited very long-chain fatty acids such as docosadienoic and docosatrienoic acids in its lipid profile. These findings underscore the biotechnological value of yeasts from lentic aquatic systems as sustainable lipid producers, paving the way for innovations in biofuels, nutraceuticals, and oleochemicals.
Tropical lakes as a novel source of oleaginous yeasts with lipid profiles for biodiesel, oleochemical, and nutraceutical applications.
阅读:9
作者:Ramirez-Castrillon Mauricio, Benavides-León Tatiana Andrea, Arcos-Velasco Lizeth Vanessa, Pantoja-Pulido Kriss Dayana, Lopez-Parra Lizbeth Lorena, Bolaños-Rojas Ana Cristina, Osorio-Cadavid Esteban
| 期刊: | World Journal of Microbiology & Biotechnology | 影响因子: | 4.200 |
| 时间: | 2025 | 起止号: | 2025 Mar 13; 41(3):105 |
| doi: | 10.1007/s11274-025-04309-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
