Single-cell multi-omics delineates the dynamics of distinct epigenetic codes coordinating mouse gastrulation.

阅读:21
作者:Fu Mingzhu, Pang Long, Wu Zhenwei, Wang Mei, Jin Jin, Ai Shanshan, Li Xin
Gastrulation represents a crucial stage in embryonic development and is tightly controlled by a complex network involving epigenetic reprogramming. However, the molecular coordination among distinct epigenetic layers entailing the progressive restriction of lineage potency remains unclear. Here, we present a multi-omics map of H3K27ac and H3K4me1 single-cell ChIP-seq profiles of mouse embryos collected at six sequential time points. Significant epigenetic priming, as reflected by H3K27ac signals, is evident, yet asynchronous cell fate commitment of each germ layer at distinct histone modification levels are observed. Integrated scRNA-seq and single-cell ChIP-seq analysis unveil a "time lag" transition pattern between enhancer activation and gene expression during germ-layer specification. Notably, by utilizing the H3K27ac and H3K4me1 co-marked active enhancers, we construct a gene regulatory network centered on pivotal transcription factors, highlighting the potential critical role of Cdkn1c in mesoderm lineage specification. Together, our study broadens the current understanding of intricate epigenetic regulatory networks governing mouse gastrulation and sheds light on their relevance to congenital diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。