Coalescence of carbon nanotubes while preserving the chiral angles.

阅读:6
作者:Takakura Akira, Nishihara Taishi, Harano Koji, Cretu Ovidiu, Tanaka Takeshi, Kataura Hiromichi, Miyauchi Yuhei
Atomically precise coalescence of graphitic nanocarbon molecules is one of the most challenging reactions in sp(2) carbon chemistry. Here, we demonstrate that two carbon nanotubes with the same chiral indices (n, m) are efficiently coalesced into a single (2n, 2 m) nanotube with preserved chiral angles via heat treatment at less than 1000 °C. The (2n, 2 m) nanotubes constitute up to ≈ 20%-40% of the final sample in the most efficient case. Additional optical absorption peaks of the (2n, 2 m) nanotubes emerge, indicating that the reaction occurs over the entire sample. The reaction efficiency strongly depends on the chiral angle, implying that C-C bond cleavage and recombination occurs sequentially. Furthermore, the reaction occurs efficiently even at 600 °C in an atmosphere containing trace amounts of oxygen. These findings offer routes for the structure-selective synthesis of large-diameter nanotubes and modification of the properties of nanotube assemblies via postprocessing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。