Acidic conditions are present in degenerated intervertebral discs and are believed to be responsible for matrix breakdown. Acid-sensing ion channel 1a (ASIC1a) is expressed in endplate chondrocytes, and its activation is associated with endplate chondrocyte apoptosis. However, the precise role of ASIC1a in regulating the matrix metabolic activity of endplate chondrocytes in response to extracellular acid remains poorly understood. Aggrecan (ACAN), type II collagen (Col2a1), and matrix metalloproteinase (MMP) expressions were determined using reverse transcription (RT)-PCR and Western blot. ASIC1a was knocked down by transfecting endplate chondrocytes with ASIC1a siRNA. MMP activity and NF-κB transcriptional activity were measured. NF-κB transcriptional activity was assessed by examining cytosolic phosphorylated IκBα and nuclear phosphorylated p65 levels. Extracellular acidic solution (pH 6.0) resulted in a decrease in ACAN and Co12a1 expressions and an increase in MMP-1, MMP-9, and MMP-13 expressions, as well as in MMP activity; while ASIC1a siRNA blocked these effects. In addition, acid-induced increase in cytosolic levels of phosphorylated IκBα and nuclear levels of phosphorylated p65 in endplate chondrocytes were inhibited by ASIC1a siRNA. ASIC1a is involved in matrix metabolism of endplate chondrocytes under extracellular acidic conditions via NF-κB transcriptional activity.
Involvement of acid-sensing ion channel 1a in matrix metabolism of endplate chondrocytes under extracellular acidic conditions through NF-κB transcriptional activity.
阅读:6
作者:Yuan Feng-Lai, Zhao Ming-Dong, Jiang Dong-Lin, Jin Cheng, Liu Hai-Fei, Xu Ming-Hui, Hu Wei, Li Xia
| 期刊: | Cell Stress & Chaperones | 影响因子: | 3.200 |
| 时间: | 2016 | 起止号: | 2016 Jan;21(1):97-104 |
| doi: | 10.1007/s12192-015-0643-7 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
