INTRODUCTION: Carbon monoxide (CO) is a leading cause of environmental poisoning in the United States with substantial mortality and morbidity. The mechanism of CO poisoning is complex and includes hypoxia, inflammation, and mitochondrial dysfunction. Currently both biomarkers and therapies for CO poisoning are limited and require new approaches. METHODS: Rats (~â300Â g) were divided into four groups of ten rodents per group (exposure): Control (room air), CO-400 (400 ppm), CO-1000 (1000 ppm) and CO-2000 (2000 ppm). Rodents received the assigned exposure through a secured tracheotomy tube over 120Â min followed by 30Â min of re-oxygenation at room air for a total of 150Â min. Five additional rodents in each group were administered a succinate prodrug (NV354) at the start of exposure for the duration of the experiment until the reoxygenation period as separate experiments. Cortical brain tissue and whole blood were obtained for mitochondrial respiration. Stored plasma and snap frozen tissue stored at -80(o)C were used to obtain protein quantification with Western Blotting. RESULTS: All animals in the Sham, CO-400, and CO-1000 groups survived until the end of the exposure period; no animals in the CO-2000 groups survived the exposure and were counted as attrition. We observed a dose-dependent decrease in key respiratory states in both isolated brain mitochondria and peripheral blood mononuclear cells (PBMCs), and, PBMCs respiration more positively correlated with isolated brain mitochondria when compared to carboxyhemoglobin (COHb). There was no significant difference in mitochondrial respiratory states in animals treated with NV354 compared to the untreated group. CONCLUSIONS: The primary findings from this study include: (1) A dose-dependent decrease with key respiration states with higher concentrations of CO; (2) PBMCs had a higher correlation to isolated brain mitochondria respiration when compared to COHb; and (3) there was no treatment effect with the use of NV354.
Blood Cells as a Cellular Biomarker for Mitochondrial Function in a Experimental Model of Acute Carbon Monoxide Poisoning with Treatment.
阅读:15
作者:Bungatavula Devesh, Greenwood John C, Shofer Frances S, Buehler Guthrie, Kao Shih-Han, Kelly Matthew, Shin Samuel S, Ehinger Johannes K, Kilbaugh Todd J, Jang David H
| 期刊: | Journal of Medical Toxicology | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Jul;21(3):327-335 |
| doi: | 10.1007/s13181-025-01077-6 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
