Optimizing bacteriophage screening and isolation methods for microbial samples derived from different body sites of cattle.

阅读:13
作者:Magossi Gabriela, Amat Samat
Bacteriophages are gaining increased research attention as alternatives to antibiotics and microbiome manipulation tools to enhance feed efficiency and animal health in cattle. However, challenges associated with phage specificity, microbial ecosystem variations, and the absence of effective screening methods have hindered harnessing the power of phage application in cattle. The objectives of this study were to (i) optimize phage screening method for microbial samples obtained from different cattle body sites, (ii) isolate lytic phages against key bovine pathogens and commensal bacteria, and (iii) characterize the isolated phages and their bacterial hosts. A total of 1,214 samples from different cattle body sites (n = 1194) and environmental sources were screened using 13 phage detection methods, including one high-throughput approach. Eighty-three phages were isolated, primarily from ruminal fluid (59), feces (15), vaginal (7) and nasopharyngeal swabs (1), and fetal ruminal fluid (1). The bacterial hosts inhibited by these phages were from 29 genera, with Bacillus (34), Escherichia/Shigella (8), Shouchella (5), Corynebacterium (4), and Lysinibacillus (4) being the most common. No phages were identified against bovine pathogens including Trueperella pyogenes, Mannheimia haemolytica, Pasteurella multocida, or Moraxella bovis. Method 12 demonstrated the highest efficiency in phage recovery, particularly from ruminal samples. The isolation of phages against commensal bacteria from the gastrointestinal, reproductive, and respiratory tracts, and fetal gut highlights their potential for microbiome modulation to improve cattle health and feed efficiency. These findings underscore the need for further research into pathogen-targeting phage isolation in cattle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。