H5Nx viruses continue to wreak havoc in avian and mammalian species worldwide. The virus distinguishes itself by the ability to replicate to high titers and transmit efficiently in a wide variety of hosts in diverse climatic environments. Fortunately, transmission to and between humans is scarce. Yet, if such an event were to occur, it could spark a pandemic as humans are immunologically naïve to H5 viruses. A significant determinant of transmission to and between humans is the ability of the influenza A virus hemagglutinin (HA) protein to shift from an avian-type to a human-type receptor specificity. Here, we demonstrate that a 2016 2.3.4.4e virus HA can convert to human-type receptor binding via a single Q226L mutation, in contrast to a cleavage-modified 2016 2.3.4.4b virus HA. Using glycan arrays, x-ray structural analyses, tissue- and direct glycan binding, we show that L133aΠand 227Q are vital for this phenotype. Thus, whereas the 2.3.4.4e virus HA only needs a single amino acid mutation, the modified 2.3.4.4b HA was not easily converted to human-type receptor specificity.
The Q226L mutation can convert a highly pathogenic H5 2.3.4.4e virus to bind human-type receptors.
阅读:9
作者:RÃos Carrasco MarÃa, Lin Ting-Hui, Zhu Xueyong, GarcÃa Alba Gabarroca, Uslu Elif, Liang Ruonan, Spruit Cindy M, Richard Mathilde, Boons Geert-Jan, Wilson Ian A, de Vries Robert P
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jan 10 |
| doi: | 10.1101/2025.01.10.632119 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
