BACKGROUND: Proteases are important enzymes in food and pharmaceutical industries, but challenges persist in their recombinant production due to host cell proteome hydrolysis and fitness loss. The development of recombinant expression systems for directed evolution of proteolytic enzymes, and industrial production are desirable. This study evaluated Saccharomyces cerevisiae as expression host for three bacterial proteases: BdpK (from Bdellovibrio bacteriovorus), IdeS, and SpeB (both from Streptococcus pyogenes), each with distinct peptide substrate scopes. RESULTS: We developed an experimental pipeline for analysis of protease gene expression levels and fitness effects on yeast cultures. Heterologous genes were fused with green fluorescent protein and their expression and effects on cell viability was monitored at the single-cell level by flow cytometry. IdeS-GFP fusion was produced efficiently with a gaussian distribution within the population and without compromising cell growth or viability. BdpK, on the other hand, displayed lower expression level and a more heterogenous distribution that was less stable over time. Production of SpeB was not feasible. Inserting the speB-GFP fusion gene resulted in complete growth inhibition and a significantly higher frequency of cells with compromised membrane integrity. Plasmid-based expression was compared with integrated-based expression, revealing higher total expression levels and lower degree of population heterogeneity for the latter. CONCLUSIONS: S. cerevisiae was found to be an efficient expression host for the bacterial protease IdeS. In contrast, the expression of BdpK and SpeB faced significant challenges, including lack of activity for BdpK, or imposing a substantial fitness burden on the cells for SpeB, likely due to its broad substrate scope resulting in native protein degradation. The findings of this study provide valuable insights into the limitations and possibilities of yeast as an expression host for bacterial protease production and for studying their physiological effects using yeast as a model eukaryote.
Functional insights from recombinant production of bacterial proteases in Saccharomyces cerevisiae.
阅读:5
作者:Lindh Tova, Collin Mattias, Lood Rolf, Carlquist Magnus
| 期刊: | Microbial Cell Factories | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 May 22; 24(1):119 |
| doi: | 10.1186/s12934-025-02732-x | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
