Higher throughput assays for understanding the pathogenicity of variants of unknown significance (VUS) in the RPE65 gene.

阅读:10
作者:Pormehr Leila Azizzadeh, Manian Kannan Vrindavan, Cho Ha Eun, Comander Jason
PURPOSE: RPE65 is a key enzyme in the visual cycle that regenerates 11-cis retinal. Mutations in RPE65 cause a retinal dystrophy that is treatable with an FDA-approved gene therapy. Variants of unknown significance (VUS) on genetic testing can prevent patients from obtaining a firm genetic diagnosis and accessing gene therapy. Since most RPE65 mutations have a low protein expression level, this study developed and validated multiple methods for assessing the expression level of RPE65 variants. This functional evidence is expected to aid in reclassifying RPE65 VUS as pathogenic, which in turn can broaden the application of gene therapy for RPE65 patients. METHODS: 30 different variants of RPE65 (12 pathogenic, 13 VUS, 5 benign) were cloned into lentiviral expression vectors. Protein expression levels were measured after transient transfection or in stable cell lines, using Western blots and immunostaining with flow cytometry. Then, a pooled, high throughput, fluorescence-activated cell sorting (FACS) assay with an NGS-based sequencing readout was used to assay pools of RPE65 variants. RESULTS: There was a high correlation between protein levels measured by Western blot, flow cytometry, and the pooled FACS assay. Using these assays, we confirm and extend RPE65 variant data, including that Pro111Ser has a low, pathogenic expression level. There was a high correlation between RPE65 expression and previously reported enzyme activity levels; further development of a high throughput enzymatic activity assay would complement this expression data. CONCLUSION: This scalable approach can be used to solve patient pedigrees with VUS in RPE65, facilitating treatment and providing RPE65 structure-function information.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。