Hierarchical TiO(2) nanotube arrays enhance mesenchymal stem cell adhesion and regenerative potential through surface nanotopography.

阅读:13
作者:Tasdemir Nur Kubra, Kilicarslan Bogac, Imren Gozde, Karaosmanoglu Beren, Taskiran Ekim Z, Bayram Cem
The concept of preconditioning mesenchymal stem cells (MSCs) under different stress conditions or with bioactive molecules is introduced to optimize their therapeutic potential. This study investigates the physicochemical effect of hierarchical TiO(2) nanotube arrays, a versatile and easy-to-prepare nanosurface, on MSC behaviour. By precisely controlling the nanotopography through anodization, we demonstrate the significant influence of surface properties on MSC adhesion, proliferation and differentiation. Electrostatic interactions between surface charge and proteins play a crucial role in these cellular responses. In addition, preconditioning MSCs under specific conditions enhances their therapeutic potential by optimizing paracrine signalling and homing properties. Higher surface charges and increasing spiky character of surface roughness of titania samples after anodization at 60 V significantly upregulated chemokine receptor type 4 (CXCR4) and vascular endothelial growth factor A (VEGFA), indicating the enhanced migratory and angiogenic potential of MSCs. The study reveals the mechanotransductive effects of nanotopography on MSC differentiation, suggesting that tailored surface features can direct cellular fate. These findings highlight the potential of hierarchical TiO(2) nanotube arrays as a promising platform for regenerative medicine, offering a novel approach to improve tissue engineering and therapeutic outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。