Although many genes are subject to local regulation, recent evidence suggests that complex distal regulation may be more important in mediating phenotypic variability. To assess the role of distal gene regulation in complex traits, we combine multi-tissue transcriptomes with physiological outcomes to model diet-induced obesity and metabolic disease in a population of Diversity Outbred mice. Using a novel high-dimensional mediation analysis, we identify a composite transcriptome signature that summarizes genetic effects on gene expression and explains 30% of the variation across all metabolic traits. The signature is heritable, interpretable in biological terms, and predicts obesity status from gene expression in an independently derived mouse cohort and multiple human studies. Transcripts contributing most strongly to this composite mediator frequently have complex, distal regulation distributed throughout the genome. These results suggest that trait-relevant variation in transcription is largely distally regulated, but is nonetheless identifiable, interpretable, and translatable across species.
Transcripts with high distal heritability mediate genetic effects on complex metabolic traits.
阅读:4
作者:Tyler Anna L, Mahoney J Matthew, Keller Mark P, Baker Candice N, Gaca Margaret, Srivastava Anuj, Gyuricza Isabela Gerdes, Braun Madeleine J, Rosenthal Nadia A, Attie Alan D, Churchill Gary A, Carter Gregory W
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 16(1):5507 |
| doi: | 10.1038/s41467-025-61228-9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
