Defence priming sensitises plant defences to enable a faster and/or stronger response to subsequent stress. Various chemicals can trigger priming; however, the response remains unexplored in oak. Here, we characterise salicylic acid (SA)-, jasmonic acid (JA)-, and β-aminobutyric acid (BABA)-induced priming of oak seedlings against the causal agent of powdery mildew (Erysiphe alphitoides, PM). Whilst JA had no effects, BABA and SA enhanced resistance by priming callose deposition and SA-dependent gene expression, respectively. Untargeted transcriptome and metabolome analyses revealed genes and metabolites uniquely primed by BABA, SA, and JA. Enrichment analyses demonstrated a limited number of pathways differentiating the three treatments or the resistance-inducing elicitors BABA and SA. However, a similar mode of action between BABA and JA was identified. Moreover, our analyses revealed a lack of crosstalk between SA and JA. Interestingly, priming by BABA was linked to alkaloid, lignan, phenylpropanoid, and indolitic compounds biosynthesis. Moreover, integration of the omics analyses revealed the role of ubiquitination and protein degradation in priming by BABA. Our results confirm the existence of chemical-induced priming in oak and has identified specific molecular markers associated with well-characterised elicitors.
Elicitor Specific Mechanisms of Defence Priming in Oak Seedlings Against Powdery Mildew.
阅读:4
作者:Sanchez-Lucas Rosa, Bosanquet Jack L, Henderson James, Catoni Marco, Pastor Victoria, Luna Estrella
| 期刊: | Plant Cell and Environment | 影响因子: | 6.300 |
| 时间: | 2025 | 起止号: | 2025 Jun;48(6):4455-4474 |
| doi: | 10.1111/pce.15419 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
