OBJECTIVE: The peroxisome proliferator-activated receptor-alpha (PPARα) plays a central role in lipid metabolism in the liver by stimulating the expression of hundreds of genes. Accordingly, regulation by PPARα could be a screening tool to identify novel genes involved in hepatic lipid metabolism. Previously, the mitochondrial transporter SLC25A47 was suggested to play a role in energy metabolism and liver-specific uncoupling, but further research is lacking. METHODS: We explored the potential role of SLC25A47 through in vitro studies and using mice overexpressing and lacking SLC25A47. RESULTS: SLC25A47 was identified as a PPARα-regulated and fasting-induced gene in human and mouse hepatocytes. Adenoviral-mediated overexpression of SLC25A47 minimally impacted metabolic parameters during fasting and high-fat feeding. During high-fat feeding, SLC25A47 ablation also did not influence any metabolic parameters, apart from a minor improvement in glucose tolerance. In fasted mice, SLC25A47 ablation was associated with modest, reproducible, and likely indirect reductions in plasma triglycerides and glycerol. SLC25A47 ablation did not influence energy expenditure. Depending on the nutritional status, metabolomic analysis showed modest alterations in plasma, liver, and hepatic mitochondrial levels of various metabolites related to amino acid metabolism, TCA cycle, and fatty acid metabolism. No major and consistent alterations in levels of specific metabolites were found that establish the substrate for and function of SLC25A47. CONCLUSION: Collectively, our results hint at a role of SLC25A47 in amino acid and fatty acid metabolism, yet suggest that SLC25A47 is dispensable for hepatic lipid homeostasis during fasting and high-fat feeding.
Deficiency of the mitochondrial transporter SLC25A47 minimally impacts hepatic lipid metabolism in fasted and diet-induced obese mice.
阅读:3
作者:Attema Brecht, de la Rosa Rodriguez Montserrat A, van Schothorst Evert M, Grefte Sander, Hooiveld Guido Jej, Kersten Sander
| 期刊: | Molecular Metabolism | 影响因子: | 6.600 |
| 时间: | 2025 | 起止号: | 2025 Feb;92:102092 |
| doi: | 10.1016/j.molmet.2024.102092 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
