Role of shear stress-induced red blood cell released ATP in atherosclerosis.

阅读:6
作者:Zhang Yunpei, Sun Haoyu, Gandhi Aayush, Du Yong, Ebrahimi Saman, Jiang Yanyan, Xu Sulei, Uwase Hope, Seidel Alane, Bingaman Sarah S, Arnold Amy C, Nguyen Christian, Ding Wei, Woolard Matthew D, Hobbs Ryan, Bagchi Prosenjit, He Pingnian
Altered hemodynamics is a key factor for atherosclerosis. For decades, endothelial cell (EC) responses to fluid-generated wall shear stress have been the central focus for atherogenesis. However, circulating blood is not a cell-free fluid, it contains mechanosensitive red blood cells (RBCs) that are also subjected to altered hemodynamics and release a large amount of ATP, but their impact on atherosclerosis has been overlooked. The focus of this study is the role of shear stress (SS)-induced RBC-released ATP in atherosclerosis. Hypercholesterolemic mouse models with and without RBC-Pannexin 1 deletion were used for the study. Results showed that SS-induced release of ATP from RBCs was at µM concentrations, three-orders of magnitude higher than that from other cell types. Suppression of RBC-released ATP via deletion of Pannexin 1, a mechanosensitive ATP-permeable channel, reduced high-fat diet-induced aortic plaque burden by 40%-60%. Importantly, the location and the extent of aortic atherosclerotic lesions spatially matched with the ATP deposition profile at aortic wall predicted by a computational fluid dynamic (CFD) model. Furthermore, hypercholesterolemia increases EC susceptibility to ATP with potentiated increase in [Ca(2+)](i), an initial signaling for aortic EC barrier dysfunction, and an essential cause for lipid accumulation and inflammatory cell infiltration. The computational prediction also provides a physics-based explanation for RBC-released ATP-induced sex disparities in atherosclerosis. Our study reveals an important role of RBC-released ATP in the initiation and progression of atherosclerosis. These novel findings provide a more comprehensive view of how altered hemodynamics and systemic risk factors synergistically contribute to atherosclerosis.NEW & NOTEWORTHY This study reveals that, in addition to fluid-derived wall shear stress, the disturbed blood flow-induced release of ATP from mechanosensitive red blood cells (RBCs), the major cellular components of blood, along with hypercholesterolemia-induced increases in endothelial cell susceptibility to ATP contribute significantly to the initiation and progression of atherosclerosis. These novel findings advance our current understanding of how altered hemodynamics and hypercholesterolemia synergistically contribute to atherosclerosis for the first time with the inclusion of RBCs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。