Staphylococcus lugdunensis does not exert competitive exclusion on human corneocytes.

阅读:4
作者:Zhang Tianqi, Luo Ran, Ehrström Marcus, Melican Keira
Human skin is our primary physical barrier and largest immune organ, and it also hosts a protective microbiota. Staphylococci are prominent members of the skin microbiota, including the ubiquitous coagulase-negative staphylococci (CoNS). The coagulase-positive Staphylococcus aureus is found as part of the microbiota, but it poses clinical concern due to its potential pathogenicity and antibiotic resistance. Recently, a CoNS, Staphylococcus lugdunensis, has been shown to inhibit S. aureus growth via the production of a novel antibiotic, lugdunin. In this study, we use human skin models to understand the spatial relationships between the CoNS Staphylococcus epidermidis and S. lugdunensis with S. aureus during colonization of human skin. We investigated the attachment patterns of the bacteria, both individually and in competition. Surprisingly, we found that attachment did not always correlate with colonization ability. S. lugdunensis exhibited significantly reduced attachment to human skin stratum corneum but was an efficient longer-term colonizer. S. lugdunensis had a distinct attachment pattern on human corneocytes, with no significant overlap, or competitive exclusion, with the other strains. S. lugdunensis is a potential probiotic strain, with a proven ability to suppress S. aureus. Before this potential can be realized, however, further research is needed to understand how this strain adheres and interacts with other bacteria in the human skin microenvironment.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。