Severe acute respiratory syndrome coronavirus 2 infection unevenly impacts metabolism in the coronal periphery of the lungs.

阅读:13
作者:Laro Jarrod, Xue Biyun, Zheng Jian, Ness Monica, Perlman Stanley, McCall Laura-Isobel
SARS-CoV-2, the virus responsible for COVID-19, is a highly contagious virus that can lead to hospitalization and death. COVID-19 is characterized by its involvement in the lungs, particularly the lower lobes. To improve patient outcomes and treatment options, a better understanding of how SARS-CoV-2 impacts the body, particularly the lower respiratory system, is required. In this study, we sought to understand the spatial impact of COVID-19 on the lungs of mice infected with mouse-adapted SARS2-N501Y(MA30). Overall, infection caused a decrease in fatty acids, amino acids, and most eicosanoids. When analyzed by segment, viral loads were highest in central lung tissue, while metabolic disturbance was highest in peripheral tissue. Infected peripheral lung tissue was characterized by lower levels of fatty acids and amino acids when compared to central lung tissue. This study highlights the spatial impacts of SARS-CoV-2 and helps explain why peripheral lung tissue is most damaged by COVID-19.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。